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Random Riemannian Geometry and Conformal Invariance

(M, g) compact Riemannian manifold of even dimension n

Conformal class

(M, [g ]) := {(M, g ′) : g ′ = e2φg , φ ∈ C∞(M)}

Naive Goal

Define probability measures PM,g on C∞(M) such that

PM,g′ = PM,g if g ′ = e2φg for φ ∈ C(M)

h
(d)
= h′ ◦ Φ if Φ : M → M ′ is an isometry and h and h′ are distributed

according to PM,g and PM′,g′ , resp.



Two dimensions

Let (M, g ′) be a closed (orientable) surface.

Uniformization Theorem: (M, g ′) is conformally equivalent to one of the
following:

the sphere;

the Euclidean plane;

the hyperbolic plane.

Random surface: Draw a random φ : M → R wrt some prob. measure PM,g

g ′ = eφg

Liouville Quantum Gravity:

φ = γ · h, γ > 0, h is a Gaussian Free Field

Note: h is not a random function.



Gaussian Free Field

Collection of centered Gaussian random varables

⟨h, φ⟩, φ ∈ H1(M)

with covariance structure

Cov [⟨h, φ⟩, ⟨h, ψ⟩] =
∫
M

∇φ · ∇ψ dx

Note: Generalization of Brownian motion to 2d .

Crucial: Conformal invariance of the Dirichlet energy

eg (u, u) :=

∫
M

|∇gu|2 dvolg = ee2φg (u, u)



Liouville Quantum Gravity

“Canonical random surfaces”

Introduced by Polyakov (1980’s) in the setting of Bosonic string theory

Definition eγhg does not make sense, since h is a distribution, not a
function.

Miller, Sheffield ’21: Scaling limit of uniform random planar maps if
γ =

√
8/3 (Brownian map: Le Gall ’13, Miermont ’13)

Kahane ’85; Duplantier, Sheffield ’11; Rhodes, Vargas ’14; Shamov ’16:
Construction of area measure for γ ∈ (0, 2) (LQG-measure)

µh = eγh dvol

Ding, Dubedat, Dunlap, Falconet ’20; Gwynne, Miller ’21:
Metric analog of eγhg , γ ∈ (0, 2) ⇒ LQG-metric.



Question:

Is there a way to “generalize” this to compact (even)-dimensional
manifolds (M, g)?



Random Riemannian Geometry and Conformal Invariance

Pg is law of Gaussian field, informally given as

dPg (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh

with (non-existing) uniform distribution dh on C(M), normalizing constant Zg ,
and bilinear form eg (u, v) = (u,Av)L2 .

Conformal Invariance Requirement

eg (u, u) = ee2φg (u, u) ∀φ, ∀u.

In case n = 2, property of the Dirichlet energy

eg (u, u) :=

∫
M

∣∣∇gu
∣∣2 d volg .



Random Riemannian Geometry and Conformal Invariance

Gaussian fields dPg (h) =
1
Zg

exp
(
− 1

2
eg (h, h)

)
dh with conformally invariant

energy
eg (u, u) = ee2φg (u, u) ∀φ, ∀u.

In n ̸= 2, Dirichlet energy no longer conformally invariant:

ee2φg (u, u) =

∫
M

∣∣∇gu
∣∣2 e(n−2)φd volg .

In n = 4, more promising: bi-Laplacian energy

ẽg (u, u) :=

∫
M

(
∆gu

)2
d volg .

Still not conformally invariant but close to:

ẽe2φg (u, u) :=

∫
M

(
∆gu + 2∇gφ∇gu

)2
d volg = ẽg (u, u) + low order terms.

Paneitz ’83:

eg (u, u) =
1

8π2

∫
M

[
(∆gu)

2 − 2Ricg (∇gu,∇gu) +
2

3
scalg ·|∇gu|2

]
d volg

is conformally invariant.



Co-Polyharmonic Energy on n-Manifolds

Assume from now on that (M, g) is n-dimensional smooth, compact, connected
Riemannian manifold without boundary, n even.

Graham/Jenne/Mason/Sparling ’92:

The co-polyharmonic energy

eg (u, v) = c

∫
M

(
−∆g

)n/4
u ·

(
−∆g

)n/4
v d volg + low order terms

is conformally invariant.

eg (u, v) =
∫
M
pgu · v d volg with co-polyharmonic operator

pgu := c (−∆)n/2u + low order terms

Choose c = 2

Γ(n/2) (4π)n/2
=: an.



Co-Polyharmonic Energy on n-Manifolds

Integrable functions (or distributions) u on M will be called grounded if∫
M
u d volg = 0 (or ⟨u, 1⟩ = 0, resp.).

Grounded Sobolev spaces H̊s(M, g) = (−∆g )
−s/2L̊2(M, volg ) for s ∈ R,

usual Sobolev spaces Hs(M, g) = (1−∆)−s/2L2(M, volg ) = H̊s(M, g)⊕ R · 1

Laplacian −∆ : Hs → H̊s−2; grounded Green operator G̊g : H̊s → H̊s+2.

Definition

The n-manifold (M, g) is called admissible if eg > 0 on H̊n/2(M).

Large classes of n-manifolds are admissible. For instance in n = 4:

all compact Einstein 4-manifolds with Ric ≥ 0 are admissible.

all compact hyperbolic 4-manifolds with spectral gap λ1 > 2 are
admissible.

For the sequel, we always assume that (M, g) is admissible.



Key Property of the Co-Polyharmonic Green Kernel

Define co-polyharmonic Green operator

kg := p−1
g : H−n(M) → L̊2(M)

and associated bilinear form with domain H−n/2(M) by

kg (u, v) := ⟨u, kgv⟩L2 .

Theorem (Dello Schiavo, Herry, K., Sturm ’21)

kg is an integral operator with an integral kernel kg which is grounded, symmetric,
and satisfies ∣∣∣kg (x , y) + log dg (x , y)

∣∣∣ ≤ C0.



Co-Polyharmonic Gaussian Field – Definition, Construction

Definition

A co-polyharmonic Gaussian field on (M, g) is a linear family
{
⟨h, u⟩

}
u∈H−n/2 of

centered Gaussian random variables (defined on some probability space) with

E
[
⟨h, u⟩ ⟨h, v⟩

]
= kg (u, v) ∀u, v ∈ H−n/2(M).

Interpretation: E
[
h(x)

]
= 0, E

[
h(x) h(y)

]
= kg (x , y) (∀x , y)

Let (Ω,F,P) be a probability space and (ξj)j∈N an iid sequence of of
N (0, 1) random variables. Furthermore, let (ψj)j∈N0 and (νj)j∈N0 denote
the sequences of eigenfunctions and eigenvalues for pg (counted with
multiplicities).

The co-polyharmonic field h is given by

h :=
∑
j∈N

ν
−1/2
j ξj ψj .

The co-polyharmonic Gaussian field on (M, g) can be regarded as a
random variable with values in H̊−ϵ(M) for any ϵ > 0.
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Co-Polyharmonic Gaussian Field – Smooth Approximation

Theorem (Dello Schiavo, Herry, K., Sturm ’21)

The co-polyharmonic field h is given by

h =
∑
j∈N

ξj ·
√
kg ψj =

∑
j∈N

ν
−1/2
j ξj ψj .

More precisely,

1 For each ℓ ∈ N, a centered Gaussian random variable hℓ with values in
C∞(M) is given by

hℓ :=
ℓ∑

j=1

ν
−1/2
j ξj ψj .

2 The convergence hℓ → h holds in L2(P) × H−ϵ(M) for every ϵ > 0. In
particular, for a.e. ω and every ϵ > 0,

hω ∈ H−ϵ(M),

3 For every u ∈ H−n/2(M), the family (⟨u, hℓ⟩)ℓ∈N is a centered L2(P)-
bounded martingale and

⟨u, hℓ⟩ → ⟨u, h⟩ in L2(P) as ℓ→ ∞.



Co-Polyharmonic Gaussian Field – Smooth Approximation

Figure: Courtesy of our co-author Lorenzo Dello Schiavo



Polyharmonic Gaussian Field – Conformal Invariance

The co-polyharmonic Gaussian field is conformally invariant modulo
re-grounding.

Theorem (Dello Schiavo, Herry, K., Sturm ’21)

Let h : Ω → H−ϵ(M) denote the co-polyharmonic Gaussian field for (M, g) and
let g ′ = e2φg with φ ∈ C∞(M). Then

h′ := h − 1

volg′(M)

〈
h, 1

〉
volg′

is the co-polyharmonic Gaussian field for (M, g ′).



Polyharmonic Gaussian Field – Discrete Approximation

Let M be the continuous torus Tn ∼= [0, 1)n

Consider its discrete approximations Tn
L
∼= {0, 1

L
, . . . , L−1

L
}n for L ∈ N

Discrete Laplacian

∆Lf (v) := L2
∑
u∼v

[f (u)− f (v)]

with eigenfunctions φz(x) =
1√
2
cos(2πxz) and φ−z(x) =

1√
2
sin(2πxz)

and eigenvalues

λL,z = 4L2
n∑

k=1

sin2
(
πzk/L

)
Discrete polyharmonic kernel

kL(u, v) =
1

an

∑
z∈Zn

L
\{0}

1

λ
n/2
L,z

· cos
(
2π z · (v − u)

)
where Zn

L = {z ∈ Zn : ∥z∥∞ < L/2}



Polyharmonic Gaussian Field – Discrete Approximation

Polyharmonic Gaussian Field on the discrete torus Tn
L

Centered Gaussian field (hL(v))v∈Tn
L
with covariance function kL

Given iid standard normals (ξz)z∈Zn
L
, the discrete polyharmonic Gaussian Field

is given as

hL =
1√
an

∑
z∈Zn

L
\{0}

1

λ
n/4
L,z

· ξz φz .

The law of the discrete polyharmonic Gaussian Field is given explicitly as

cn exp

(
− an
2N

∥∥∥(−∆L)
n/4h

∥∥∥2
)
dLN(h)

on RN ∼= RTn
L where N = Ln.



Polyharmonic Gaussian Field – Discrete Approximation

Theorem (Dello Schiavo, Herry, K., Sturm ’23)

Convergence of fields hL → h as L → ∞: tested against f ∈
⋃

s>n/2

Hs(Tn)

Convergence of Fourier extension of hL to h: in each H−ϵ(Tn) and also
tested against f ∈ H−n/2(Tn)



Liouville Geometry



Liouville Geometry

Fix an admissible manifold (M, g) and a co-polyharmonic Gaussian field
h : Ω → D′. Our naive goal is to study the ‘random geometry’ (M, gh)
obtained by the random conformal transformation,

gh = e2hg ,

and in particular to study the associated ‘random volume measure’ given as

µh(x) = enh(x) volg (x)

and the ‘random metric’ (or ‘random distance’) as

dh(x , y) = inf
φ

∫ 1

0

eh(φ(t))|φ′(t)|dt

Due to the singular nature of the noise h, however, both of these objects will
be degenerate – as long as no additional renormalization is built in.



Liouville Geometry

In n=2:
Replacing h by suitable mollifications hℓ and proper renormalization leads (for
sufficiently small γ ∈ R) to sequences of random measures (µhℓ) and random
distances (dhℓ) on M which converge as ℓ→ ∞ to non-trivial limit objects

Duplantier/Sheffield 2011, Rhodes/Vargas 2014

µh(x) = lim
ℓ→∞

eγhℓ(x)−
γ2

2
E[hℓ(x)

2] volg (x).

Ding/Dubedat/Dunlap/Falconet 2020, Gwynne/Miller 2021

dh(x , y) = lim
ℓ→∞

1

λγ,ℓ
inf
φ

∫ 1

0

eγ/dγ · hℓ(φ(t))|φ′(t)|dt.

Miller/Sheffield 2020/21

For the particular value γ =
√

8/3, the random metric measure space (M, dh, µh)
is isometric in distribution to the Brownian map
= scaling limit of random triangulations (Le Gall 2013) or quadrangulations
(Miermont 2013) of the sphere.



Liouville Quantum Gravity Measure

Let M as before be a compact manifold of even dimension and h the
co-polyharmonic Gaussian field.
For ℓ ∈ N define a random measure µℓ = ρℓ volg on M with density

ρℓ(x) := exp
(
γhℓ(x)−

γ2

2
kℓ(x , x)

)
where as before hℓ :=

ℓ∑
j=1

ν
−1/2
j ξj ψj and kℓ(x , x) := E

[
h2
ℓ(x)

]
=

ℓ∑
j=1

ν−1
j ψ2

j (x).

Based on Kahane 1986, Shamov 2016:

Theorem (Dello Schiavo, Herry, K., Sturm ’21)

If |γ| <
√
2n, then there exists a random measure µ on M with µℓ → µ. More

precisely, for every u ∈ C(M),∫
M

u dµℓ −→
∫
M

u dµ in L1(P) and P-a.s. as ℓ→ ∞.

The random measure µ := lim
ℓ→∞

µℓ is called Liouville Quantum Gravity measure.



Liouville Quantum Gravity Measure

Proposition

If |γ| <
√
n, then for every u ∈ Cb(M),

(
Yℓ

)
ℓ∈N :=

(∫
M

u dµℓ

)
ℓ∈N

is L2-bounded martingale

Proof: Assume 0 ≤ u ≤ 1. Then

sup
ℓ

E
[
Yℓ

2
]
= sup

ℓ
E
[ ∫∫

eγhℓ(x)+γhℓ(y)−
γ2

2
kℓ(x,x)−

γ2

2
kℓ(y,y) · u(x)u(y) dx dy

]
= sup

ℓ

∫∫
eγ

2 kℓ(x,y) · u(x)u(y) dx dy

≤
∫∫

eγ
2 k(x,y) dx dy

=

∫∫
1

d(x , y)γ2 dx dy +O(1)

due to the log divergence of k. The latter integral is finite if and only if γ2 < n.



Liouville Quantum Gravity Measure

Theorem (Dello Schiavo, Herry, K., Sturm ’21)

If γ <
√
2 then a.s. the LQG measure µ does not charge sets of vanishing

H1-capacity

−→ Dirichlet form
∫
M
|∇u|2d volg on L2(M, µ)

−→ Liouville Brownian motion (random time change of BM)

A key property of the Liouville Quantum Gravity measure is its quasi-invariance
under conformal transformations.

Theorem (Dello Schiavo, Herry, K., Sturm ’21)

Let µ be the Liouville Quantum Gravity measure for (M, g), and µ′ be the
Liouville Quantum Gravity measure for (M, g ′) where g ′ = e2φg for some φ ∈
C∞(M). Then

µ′ (d)
= e(n+

γ2

2
)φ µ.



LQG Measure – Discrete Approximation

Let M be the continuous torus Tn ∼= [0, 1)n

Consider its discrete approximations Tn
L
∼= {0, 1

L
, . . . , L−1

L
}n for L ∈ N.

Recall the polyharmonic Gaussian field on the discrete torus Tn
L

hL =
1√
an

∑
z∈Zn

L
\{0}

1

λ
n/4
L,z

· ξz φz .

For given γ ∈ R, the discrete LQG measure µL is the random measure on Tn
L

defined by

dµL(v) = exp

(
γhL(v)−

γ2

2
kL(v , v)

)
dmL(v),

where mL denotes the normalized counting measure 1
Ln

∑
u∈Tn

L
δu.

In accordance to the approximation of the polyharmonic fields, we have
convergence of µL to the LQG measure µ on Tn.



LQG Measure – Discrete Approximation

Theorem (Dello Schiavo, Herry, K., Sturm ’23)

(i) For γ <
√

n/e and hierarchically ordered L = aℓ, a ∈ N≥2,

µaℓ → µ in law in L1(P) as ℓ→ ∞.

(ii) A corresponding result holds true for the LQG measure µL,♯ associated to
the Fourier extension hL,♯: for γ <

√
n/e this semi-discrete LQG measure

converges to µ in law in L1(P) as L → ∞.

(iii) An analogous convergence result holds for the so-called spectrally reduced
semi-discrete LQG measure in the range γ <

√
2n.

The range of γ in (i) and (ii) differs from the Gaussian multiplicative
chaos construction since this construction uses the eigenvalues of the
discrete Laplacian instead of the Laplacian.
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